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Abstract

Despite the variety of statistical methods available for static modeling of plant distribution, few studies directly
compare methods on a common data set. In this paper, the predictive power of Generalized Linear Models (GLM)
versus Canonical Correspondence Analysis (CCA) models of plant distribution in the Spring Mountains of Nevada,
USA, are compared. Results show that GLM models give better predictions than CCA models because a species-
specific subset of explanatory variables can be selected in GLM, while in CCA, all species are modeled using
the same set of composite environmental variables (axes). Although both techniques can be readily ported to a
Geographical Information System (GIS), CCA models are more readily implemented for many species at once.
Predictions from both techniques rank the species models in the same order of quality; i.e. a species whose
distribution is well modeled by GLM is also well modeled by CCA and vice-versa. In both cases, species for
which model predictions have the poorest accuracy are either disturbance or fire related, or species for which
too few observations were available to calibrate and evaluate the model. Each technique has its advantages and
drawbacks. In general GLM will provide better species specific-models, but CCA will provide a broader overview
of multiple species, diversity, and plant communities.

Abbreviations:AML – ArcInfo Macro Language; CCA – Canonical Correspondence Analysis; DEM – Digital
Elevation Model; GIS – Geographical Information System; GLM – Generalized Linear Model.

Introduction

Static modeling of plant distribution using statistical
methods to relate vegetation to the environment has
gained importance in recent years (see Franklin 1995).
A variety of statistical techniques – ordination, GLM,
GAM, etc. – have been proposed and used. Here, we
do not aim at giving a list of examples for these dis-
tinct approaches, which information is best provided
in review papers (e.g., Franklin 1995) or books (e.g.,
Jongman et al. 1995). Most studies use only one of
the many statistical techniques that may properly be
used, and little information is available on the respec-
tive predictive capacity of each approach compared
to the others. The debate is usually restricted to the

intrinsic suitability of a particular method for a given
data set. For instance, is a non-normally distributed re-
sponse variable still properly modeled by least-square
methods or weighted averaging methods (e.g., recip-
rocal averaging in canonical correspondence analysis)
that both rely on the normality assumption (Palmer
1993; Jongman et al. 1995)? Or, with GLMs, is a
skewed response curve best integrated in a model by
a cubic polynomials (e.g., Ferrer-Castán et al. 1995),
a β-function (e.g., Austin et al. 1994), a non-linear
function (e.g. from a hierarchical set of functions;
Huisman et al. 1993) or a smoothed function (e.g., Yee
& Mitchell 1991)? Again, answers to such questions
can be found in specific papers (e.g., Oksanen 1997).
In turn, studies that compare the results of different
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techniques applied to a similar data set (as, e.g., Skid-
more et al. 1996), be it real or simulated, are missing
in the literature.

The aim of this paper is to compare two broadly
used techniques - CCA-based modeling and GLM
methods – by using the same training and evalua-
tion data sets. In order to have a sufficient number of
models to compare, models are calibrated for twenty-
three species by using the same basic set of predictor
variables. More specifically, our main goals are:
(1) To compare the results (fit of the model, adequacy

of the prediction) of both sets of models. Does the
overall trend in the results agree for both sets? Is a
well GLM modeled species also well modeled by
CCA compared to models for other species in the
same data set?

(2) From the overall trend between both sets of
model, is it possible to distinguish some group-
ing of species having a better modeling result than
others? Are there ecological reasons for this (e.g.,
missing predictors in the data set only important
for some species)?

(3) To compare the respective efforts of implement-
ing both types of models in a Geographical Infor-
mation System (GIS).

Study area

The Spring Mountains are located in southern Nevada,
20 km west of Las Vegas, at latitude 36◦15′ N and
longitude 115◦45′W (Figure 1). Rising out of the Mo-
jave Desert at 700 m, the Spring Mountains reach a
peak elevation of 3600 m within a distance of 10 km,
creating a very sharp physiographic gradient. Plant
communities range from Mojave Desert shrub at the
base, through Joshua tree woodland, sagebrush, pin-
ion/juniper woodland, and a variety of mixed conifers
and aspen at the upper elevations. The highest region
supports limber and bristlecone pine, with a small area
of alpine tundra at the peak. Deep canyons radiate
from the highest peak at Mt. Charleston, creating com-
plex mosaics of vegetation across solar radiation gra-
dients on opposing slopes. Natural and anthropogenic
fires and disturbances have added to the complexity of
the vegetation mosaic. Because the Spring Mountains
are isolated by more than 100 km from the nearest
mountains with similar elevation, they support many
endemic plant and animals at both the species and
subspecies level (Nachlinger & Reese 1996).

Most of the Spring Mountains are part of the
Toiyabe National Forest (TNF). Because of their prox-
imity to rapidly growing Las Vegas, they have been
designated as a National Recreation Area, which will
lead to increased visitation and development of recre-
ation facilities. As part of the planning process, TNF
contracted with The Nature Conservancy (TNC) to
perform an on-the-ground vegetation survey. This sur-
vey had basically two complementary objectives: to
identify the distribution and abundance of endemic
and potentially threatened plants and to create a wide
range map of various species and plant communities
(Nachlinger & Reese 1996).

The data set

The data set used in this study was sampled by The
Nature Conservancy (TNC; Nachlinger & Reese 1996)
in the Spring Mountains. This inventory includes all
higher plant species. In our study, the data set is
split into two subsets. One is used for calibrating the
models (training data set) whereas the other is used
later on to evaluate the quality of model predictions
(evaluation data set).

Data from 230 plots (generally 20 m× 20 m) were
collected in the summer of 1994 (Figure 1). Plots were
distributed according to a stratification scheme, using
elevation (300 m bands), aspect (four classes, centered
on N, S, E and W), slope (0–5◦, 5–15◦ and> 15◦),
and five geologic substrates. Ocular estimates of per-
cent ground cover for all vascular plant species were
collected along with data on soils, litter, and other site-
specific characteristics (Nachlinger & Reese 1996). To
save access time and maximize the number of samples,
plots in each strata were not chosen according to a
random scheme, but localized in the field in a more
ad hocmanner.

For the models presented here, the response vari-
able is the presence/absence of tree and shrub species
at each sampled location. Eleven plots containing
flowing water with unique riparian vegetation, and
four plots supporting unique cliff vegetation (slope
>40◦) have been eliminated from the analysis. There-
fore, the pared down data set deals with upland
vegetation only.

Predictor variables are elevation (elev), slope angle
(slo), northness (nness), eastness (eness), summer sol-
stice insolation (ssol), spring equinox insolation (esol)
and four topographic position indices calculated at the
different smoothing levels: 150 m, 300 m, 1000 m and
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Figure 1. Situation of the study area in the USA and shaded relief of the Spring Mountains, with labeling of the highest elevations (peaks) and
the locations of the vegetation sampling sites.
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2000 m (tp150to tp2000). All of the predictors used in
this study can be derived entirely from a Digital Eleva-
tion Model (DEM; shaded representation in Figure 1)
– and hence express terrain related gradients – making
the methods widely applicable.

Although we agree that true resource or direct pre-
dictors (in the sense of Austin & Smith 1989) would
make models more physiological (i.e., snow distrib-
ution, solar radiation and wind are the main factor
influencing vegetation patterns in a mountainous land-
scape; Frank 1988), we prefer to use primarily terrain
related gradients, because: (1) only environmental pre-
dictors that can be mapped across the mountain range
in the GIS are included in the analysis; variables such
as soil characteristics, local disturbance, and fire his-
tory are unfortunately not universally available; (2)
spatially-explicit physiologically meaningful predic-
tors tend to be less precise than pure digital topo-
graphic characteristics, since they are mostly derived
by terrain-sensitive spatial interpolations of climate
stations or other punctually-distributed ecologically
relevant data (e.g., Hutchinson & Bischof 1993); this
is a particular problem in the study area where there
is a low density of climate stations; (3) macroclimate
is very homogeneous throughout the entire moun-
tain range, so that temperature and precipitation are
very closely correlated with elevation; Terrain related
gradients are also highly correlated with meso-scale
climatic and geomorphological factors that are diffi-
cult and imprecise to model directly, such as wind
exposure, avalanche and fire frequency, canyon level
cold air movements, or soil depth; previous studies
showed that terrain related gradients are strong deter-
minants of plant patterns in similar landscapes (e.g.,
Frank 1988; Burke et al. 1989).

Elevation is sampled from a 30 m resolution DEM
covering the study area (Figure 1). All other predictors
are then modeled on the basis of the DEM. Slope an-
gle and slope aspect are calculated in the ArcInfo GIS
(vers. 7.1; UNIX-based system, ESRI Corp.) by using
in-built functions. The circular variable slope aspect
is transformed into a continuous north-south gradi-
ent (northness) and an east-west gradient (eastness)
by using respectively the sine and cosine transforma-
tions. Topographic position indices are calculated at
each cell of the DEM by calculating the difference be-
tween the elevation of the cell and the mean elevation
calculated for all cells of a moving circular window
centered on the cell of interest. Four topographic posi-
tions are considered, with windows’ radii respectively
set to 150 m, 300 m, 1000 m and 2000 m. Such indices

are a flexible way to define the relative position of a lo-
cation along a topographic gradient (ridge top, middle
slope or valley). Solar radiation for the equinox and
summer solstice was calculated using the Arc Macro
Language (AML) program SOLARFLUX (Hetrick et
al. 1993), which calculates clear-sky insolation across
a DEM accounting for aspect, slope, and topographic
shading.

All environmental predictors are finally stored as
separate layers in the GIS. Environmental data for
each sample point is extracted from the GIS.

One-hundred forty-four plots are randomly cho-
sen from the data set for the training data set, and
the remaining 71 are used as the evaluation data set.
Models are calculated for trees (all of them;n =
10 species) and the most common shrubs (n = 13
species) only, as their modeling seems particularly
suited at the study resolution (30 m). A finer resolution
(10 m or higher) would be preferred for herbaceous
species (and particularly for alpine species), although
satisfying results were obtained with a similar res-
olution in the European Alps (25 m; Guisan et al.
1998).

Methods

Statistical methods are used to relate the distribution
of plant species (see Nachlinger & Reese 1996, for
nomenclatural aspects) to the spatial distribution of
environmental predictors. This is done in a ‘static’
or ‘empirical’ way by assuming that vegetation is in
pseudo-equilibrium with climate and, in turn, veg-
etation does not influence significantly the regional
climate. This contrasts with more dynamic approaches
that attempt to model ecological processes (see Ko-
rzukhin et al. 1996 for a comparison of both ap-
proaches). Several statistical techniques can be used
for this purpose. The choice depends primarily upon
the type of response variable modeled. A review of
some of these techniques can be found in Franklin
(1995).

When the response variable is binary (i.e., pres-
ence/absence), one can apply for instance a Gener-
alized Linear Model (GLM; see Nicholls 1989), a
particular case of multiple regression, with binomial
distribution and logistic link (or other adequate links
like probit) as used, e.g., by Lenihan (1993).

Another approach is to use Canonical Correspon-
dence Analysis (CCA; Ter Braak 1987) to predict
distributions of species or communities (see., e.g., Hill
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1991; Gottfried et al. 1998). In this direct gradient
analysis technique, main axes of a correspondence
analysis (CA; see Hill 1974) are constrained to be
a linear combination of environmental descriptors,
which makes it very comparable to linear regression.

Other techniques that could be used include simple
boolean rules (e.g., Walker et al. 1992), Bayesian ap-
proaches (e.g., Breziecki et al. 1993), orthogonalized
regressions (Saetersdal & Birks 1997), generalized ad-
ditive modeling (GAM; e.g., Yee & Mitchell 1991),
classification techniques (e.g., Walker & Moore 1988),
discriminant analysis (e.g., Frank 1988), neural net-
works (e.g., Fitzgerald & Lees 1992) or environmental
envelopes (e.g., Shao & Halpin 1995). Quantitative
model comparison between environmental envelopes
(BIOCLIM and HABITAT) and classification (CART)
can be found in Walker & Cocks (1991) or between
environmental envelopes (BIOCLIM), classification
(CART) and a particular bayesian approach (nonpara-
metric classifier) in Skidmore et al. (1996).

Here, we focus on two broadly used techniques,
GLM and CCA, as (1) they are relatively straightfor-
ward to implement in a Geographical Information Sys-
tem; (2) they represent two very distinct approaches in
the sense that CCA allows for the simultaneous model-
ing of all species included in the study whereas, with
GLM, a distinct modeling effort is needed for every
species; (3) yet no quantitative comparison have been
done between them.

GLM-based modeling

Because the response is binary rather than follow-
ing a true binomial distribution, generalized linear
models (GLM; see Nicholls 1989) are calibrated in
S-PLUS (MathSoft Inc.) by specifying aquasidistrib-
ution with a variance function equal to mu.(1–mu) and
a logistic link function. This alternative is preferred
to a binomial distribution with logistic link, as the
scale parameter can in this way be automatically es-
timated rather than set to one (the default for Binomial
models). However, with such a model, the estimated
coefficients and adjusted values appear to be very sim-
ilar to those provided by a Binomial GLM. The fit of
the model (D2) is calculated as the proportion of ex-
plained deviance (i.e., similar measure as the variance;
see McCullagh & Nelder 1983). It can be corrected
by the number of degrees of freedom (df) used to fit
the model, to provide an adjusted-D2 (similar to an
adjusted-R2; see Weisberg 1980), defined as

adj−D2 = 1− [(n− 1)/(n− p)].[1−D2],
wheren is the total number of observations,p is the
number of parameters used to fit the model (see Ta-
ble 1) and (n − p) is the residual degree of freedom.
In order to make easier the final ecological discus-
sion of the models (e.g., interaction terms), we do not
orthogonalize the predictors (e.g. through principal
component analysis) prior to the model calibration.

GLM models are readily implemented in a geo-
graphical information system (GIS). Each model is
implemented by building a single formula where each
coefficient multiplies its related predictor variable.
The results of the calculations are obtained to the scale
of the linear predictor (LP) so that the inverse logistic
transformation

p(y) = exp(LP)/(1+ exp(LP)),

is then necessary to obtain probability values between
0 and 1 at every cell of the GIS grid. We use a cus-
tom function in S-Plus that automatically fits the final
model of any species – starting from a pre-defined
species specific formula – and provide theD2, cali-
bration and evaluation Kappa values as outputs. In a
last step, the function automatically writes a species’
specific GIS macro (Arcinfo Macro Language; AML)
that allows the calculation, from the fitted regression
coefficients and for each grid cell in the GIS, of the
probability of species occurrence.

CCA-based modeling

CCA-based models were calibrated in CANOCO (ver.
3.12; Ter Braak 1988). Model calibration is very close
to linear regression, except that the goodness-of-fit
criterion is here to ‘minimize the ratio of the mean
within-species sum-of-squares of the variate to the
overall sum of squares’ (Hill 1991). Selection of vari-
ables can also be made in a stepwise approach, but it is
not species specific (selection is made of the environ-
mental variables explaining successively the highest
proportion of variance in the species data as a whole).
Axes can be tested for significance through successive
Monte Carlo permutations. CCA is appropriate to deal
with species data sets that contain many zeros (i.e.,
absences), but rely on several postulates (e.g., uni-
modal symmetrical species’ response curves, species
have equal ecological amplitude and equal maxima)
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Table 1. Comparison of predictions from GLM and CCA models. Species’ models are listed by decreasing accuracy of the GLM predictions
(evaluation Kappa). part.= partially-; Dist.= Disturbance; Aval.= Avalanche.

Species Ecological Calibration Evaluation

requirement Presence No. of Proportion of Kappa Presence Kappa

(out of 144) predictors explained variance (out of 71)

GLM CCA GLM CCA GLM CCA

Coleogyne ramosissima − 34 3 0.90 0.47 0.94 0.84 17 0.82 0.76

Yucca brevifolia − 17 4 0.71 0.27 0.85 0.62 9 0.80 0.54

Pinus longaeva − 28 5 0.75 0.35 0.88 0.64 13 0.73 0.57

Yucca baccata − 44 5 0.49 0.37 0.68 0.59 27 0.79 0.80

Ephedra viridis − 66 4 0.52 0.42 0.72 0.53 37 0.77 0.59

Pinus flexilis − 15 5 0.66 0.27 0.75 0.44 10 0.72 0.39

Pinus ponderosa − 25 3 0.60 0.27 0.78 0.56 9 0.70 0.49

Cercocarpus ledifolius − 46 7 0.56 0.17 0.73 0.61 16 0.69 0.56

Pinus monophylla − 74 4 0.45 0.09 0.65 0.49 37 0.63 0.55

Artemisia tridentata − 64 6 0.31 0.02 0.54 0.33 35 0.63 0.42

Juniperus osteosperma − 61 4 0.47 0.28 0.68 0.61 36 0.61 0.61

Gutterezzia saroscens part. Dist. 24 9 0.39 0.16 0.55 0.42 14 0.61 0.42

Abies concolor − 35 6 0.80 0.40 0.89 0.62 11 0.48 0.40

Ribes cereum part. Fire 28 10 0.55 0.29 0.71 0.56 17 0.41 0.58

Arctostaphylos pungens Fire 21 7 0.47 0.08 0.56 0.29 7 0.35 0.20

Quercus gambellii Fire 22 5 0.58 0.14 0.71 0.62 5 0.31 0.33

Populus tremuloides Aval./Fire 7 4 0.42 0.10 0.44 0.22 3 0.31 0.25

Gareya flavescans Fire 22 9 0.52 0.22 0.70 0.52 9 0.28 0.33

Chrysothamnus visciflorus Dist. 20 5 0.17 0.08 0.37 0.15 14 0.22 0.19

Chrysoth. nauseosus Dist. 11 4 0.23 0.03 0.41 0.11 6 0.21 0.10

Amelanchier utahensis Fire 16 8 0.46 0.03 0.63 0.31 9 0.13 0.33

Acer glabrum − 4 2 0.50 0.15 0.66 0.20 2 0 0.18

that may theoretically invalidate its use in some sit-
uations. However, Ter Braak (1987) argues that his
method is still robust when such postulates are vio-
lated, and simulation studies show that CCA is robust
in the face of skew and noise (Palmer 1993). It has also
been used successfully to predict spatial distribution of
binary data (Hill 1991).

An overall measure of the CCA fit is given both by
the trace (or total inertia) of the underlying correspon-
dence analysis (CA) and by the proportion of variance
in the species’ data that is explained by each canonical
axis. The trace is the total variance in the species data
(i.e., the sum of all eigenvalues). It is measured by the
chi-square of the sample-by-species table (Greenacre
1984) divided byN, the table’s grand total (see Ter
Braak & Smilauer 1998).

The fit of a particular species by k CCA axes is
given cumulatively and expressed as a fraction of the

variance of a species. The species variance is calcu-
lated as the chi-square of the sample-by-species table
divided by species’ column total (for more details, see
Greenacre 1984, or Ter Braak & Smilauer 1998). The
reported fits are the regression sums of squares of the
weighted regression of the data for the species, ex-
pressed as a fraction of the total sum of squares for
the species (i.e. in a similar way asR2 in GLMs), on
the 1 tok ordination axes. The overall percentage of
explained variance (‘% EXPL’ in CANOCO outputs)
is obtained by summing all axes. These measures of
the fit are discussed in more details in Ter Braak &
Smilauer (1998).

In addition, the species-environment correlation
can be measured for each axis as the correlation of the
respective multidimensional coordinates of the species
occurrences in both the species and the environmental
space. The later is resulting from multiple regres-
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sion predictions of the species coordinates on the
environmental variables. A high species-environment
correlation does not necessarily mean that an appre-
ciable amount of the species data is explained by the
environmental variables (Ter Braak 1988), and thus is
not a good measure of the fit.

Calculating the main axes from a linear combina-
tion of the original environmental predictors (using the
canonical coefficients) readily implements CCA pre-
dictions in a GIS. Each axis constitutes a grid layer
in the GIS. In fact, it is a map of a key environmen-
tal gradient, and is a useful product in its own right.
All the axis layers together define the new canonical
space. This allows determining the canonical coordi-
nates of each grid cell on the map and calculating its
Euclidean distance to each species centroid in canon-
ical space. Distances can be grouped by classes of
standard deviation unit and mapped to draw the poten-
tial distribution of each species. The whole procedure
is carried out by a custom macro (CANOGEN AML)
that uses elements of the CANOCO output file as input
and produces a potential map for each species included
in the data set.

Comparing the two approaches

Although both approaches rely primarily on two dif-
ferent methodologies and mathematical algorithms,
they also differ seriously in the way the predictor and
the response variables are handled. Whereas the CCA-
based approach integrates all predictor and response
variables at the same time, in GLMs, a species spe-
cific subset of predictors has generally to be selected
and each species is modeled in a separate run. CCA
models use the variance associated with all predictors,
which is best summarized in orthogonal axes, to fit the
model of any species. Hence, the linear combination of
predictors is exactly the same for all species. In GLMs,
only the subset of predictors that allows for the highest
deviance reduction is kept in the final model, so that
each species distribution is predicted by a possibly
different linear combination of predictors. Moreover,
while interaction terms can easily be incorporated into
GLM and CCA models, they need to be interpreted
cautiously.

In CCA, the problem of multicolinearity between
predictors is solved automatically by calculating or-
thogonal axes that minimize the variance. Whereas in
GLMs, orthogonalizing the predictors is an alternative
that can be made prior to the model calibration (except
in the case of partial least square procedures where it

is included in the model calibration; see Heikkinen
1996). However, this procedure is not always neces-
sary if the predictors retained in the final model show
little correlation, as was the case in our study.

Finally, in GLMs the predicted values are proba-
bilities, whereas in CCA, a distance to the centroid
of species’ presence occurrences is calculated in term
of standard deviation units. Both types of prediction
can be cut back to the presence/absence scale of the
response variable by calibrating a threshold value that
provides optimal predictions (Guisan et al. 1998).

The best measure of agreement between observed
and predicted presence/absence is Kappa (Cohen
1960; see also Monserud & Leemans 1992). Its cal-
culation is based on marginal probability of a contin-
gency table, which is:

κ = (θ1− θ2)/(1− θ2),

where θ1 = 6ipii and θ2 = 6ip.i+p+i . θ1 is the
sum of the diagonal elements pii in the table, i.e.,
the agreement between observed and predicted val-
ues. Hence, it represents the overall proportion of
observed agreement.θ2 calculates the overall propor-
tion of chance-expected agreement that occurs if the
rows are independent of the columns (Monserud &
Leemans 1992), and serves to correctθ1. It is based
on multiplying marginal frequencies of the row and
column – pi+ and p+i – and summing up each element
of the table. Kappa is used as the main measure, in
this study, to compare the predictive capacity of both
procedures.

Results

GLM modeling

The results of GLM models are given in Table 1.The
combination of predictors retained in each model is
given in Table 2. GLM models explain a proportion
of deviance (adj-D2) that range from 0.15 (weak fit)
to 0.90 (high fit; Table 1). These values are already
weighted byn-p the residual number of degree of
freedom, withp the number of predictors used in the
model (4th column in Table 1) andn the total num-
ber of observations (out of a maximum of 144 in the
calibration data set).

Models in Table 1 are ordered as to the predic-
tive quality (evaluation Kappa) of their GLM model.
Following this classification, four categories of model
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Table 2. Detailed formulas of the GLM models. All the terms were significantly retained in the model at the 0.05 confidence level by
both a t-test and a Chi-square test of deviance reduction. The function poly stands for polynomials. For instance, poly(slo,2) means a
second order of the type slo+ slo2. Finally, the double dots (:) between two variable define an interaction term; elev= elevation, slo
= slope, tp= topographic position (following number is the size of the moving windows, see text for explanation), eness= eastness,
nness= northness, esol= equinox insolation, ssol= summer solstice insolation.

Species GLM formulas

Abies concolor poly(elev,2)+ poly(nness,2)+ tp2000+ nness:tp2000

Acer glabrum esol2 + tp1000

Amelanchier utahensis poly(elev,2)+ esol+ tp3003 + nness2 + poly(elev,2):esol+ elev:nness2

Arctostaphylos pungens poly(elev,2)+ nness+ esol+ nness:esol+ poly(elev,2):esol

Artemisia tridentata poly(elev,2)+ tp2000+ eness+ poly(elev,2):tp2000

Cercocarpus ledifolius poly(elev,2)+ esol+ poly(tp2000,2)+ elev:esol+ elev2:tp2000

Chysothamnus nauseosus elev+ nness+ ssol+ ssol:nness

Chysothamnus visciflorus elev+ slo+ nness+ ssol+ slo:nness

Coleogyne ramosissima elev+ poly(tp300,2)

Ephedra viridis elev+ tp200+ nness+ ssol

Gareya flavescans poly(elev,2)+ tp10002 + nness+ ssol+ esol+ ssol:esol+ ssol:elev+ tp10002:nness

Gutterezzia saroscens poly(elev,2)+ nness+ ssol+ poly(tp2000,2)+ elev:nness+ ssol:nness+ nness:elev2

Juniperus osteosperma poly(elev,2)+ tp2000+ eness

Pinus flexilis poly(elev,3)+ esol+ esol:elev2

Pinus longaeva poly(elev,2)+ esol+ tp2000+ esol:tp2000

Pinus monophylla poly(elev,2)+ tp1000+ elev:tp1000

Pinus ponderosa poly(elev,2)+ tp2000

Populus tremuloides poly(elev,2)+ tp2000+ elev:tp2000

Quercus gambellii elev2 + elev3 + tp300+ esol+ elev2:esol

Ribes cereum poly(elev,2)+ tp2000+ esol+ ssol+ poly(elev,2):esol+ ssol:tp2000+ poly(elev,2):tp2000

Yucca baccata poly(elev,3)+ slo+ ssol

Yucca brevifolia elev+ elev3 + tp2000+ nness

are distinguished. Thicker plain lines separate the four
model categories in Table 1.
(1) Models showing a very high Kappa at evaluation

(>0.8).
(2) Models still having a very satisfying value of

Kappa (0.6< Kappa< 0.8).
(3) Models having a non-satisfying value of Kappa

(i.e.,<0.5), although enough observations of pres-
ence are available to fit a model.

(4) Models having a Kappa value of zero, because too
few observations are available, to both calibrate
and evaluate the model.
Interestingly, our results tend to indicate that, for a

given species, a very low amount of presence amongst
the total observationsN may still provide an appar-
ently satisfying fit for the model, although evaluation
is actually very poor (Figures 4f and 4h). For example,
this is the case with the models forAmelanchier uta-
hensisand Acer glabrum. Models for some species,
i.e. Yucca baccataor Ephedra viridis, have a low

D2 (around 0.5) although their evaluation is still con-
sidered good on the Kappa scale of agreement (see
Monserud & Leemans 1992). Conversely, models
for species with highD2 and high calibration Kappa
may have poor evaluation Kappa (Abies concolor, in
particular). The overall correlation betweenD2 and
calibration and evaluation Kappa were 0.95 and 0.49,
respectively (Figures 4d and 4f). Calibration and eval-
uation Kappa were only moderately correlated (r =
0.56; Figure 4h). All three correlation values were
significant at the 97% level (or higher; allp-values
<0.03). These relatively low correlation values sug-
gest that the GLM tend to overfit the calibration data
set, leading to a poor evaluation fit. Hence, it is sug-
gested that the classicalD2 measure of the fit may not
be fully reliable in the case of GLMs, and one should
rely more on empirical evaluation of the models.
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Figure 2. CCA biplots of trees. Species scores are linear combination scores. Species codes are the first two letters of the genus and first two
letters of the species names (see Table 2 for full names). Tolerances (± 1 s.d.) are shown forJuniperus osteosperma(JUOS) andPinus flexilis
(PIFL). (a) Axis 1 versus axis 2. (b) Axis 3 versus axis 4.

CCA-based modeling

The overall ordination used five variables that were
selected using the forward selection procedure in
CANOCO. Scaling 2 (species scores are weighted av-
erage site scores) was used because the sites covered
virtually the entire elevation range of the mountains,
and most species distributions fell well within the
range of sites. The ordination biplots for the 10 tree
species shows the overall results of the CCA ordina-
tion (Figure 2). The variables retained are: elevation
(elev), slope (slo), equinox insolation (esol), topo-
graphic position 300 (tp300) and eastness (eness). The
eigenvalues, and several measures of the fit of the 4
axes are shown in Table 3. Cumulative proportions of
variance of the species data are quite low (Table 3),
but this is usual, as presence-absence data are often
very noisy (Ter Braak 1988). Moreover, an ordination
diagram that explains only a low percentage of vari-
ance may still be quite informative (Gauch 1982). The
evaluation Kappas tend to be better than one might
expect from the low proportion of variance explained,
indicating that the spatial context is being relatively
well modeled. Canonical coefficients, t-values, and
correlation of environmental variables with ordination
axes are given in Table 4.

Axis 1 (eigenvalue= 0.71) is dominated by el-
evation (Figure 2a, Table 4), and is interpreted as
the temperature-precipitation gradient as one proceeds

Table 3. Results from the CCA analysis. Characteristics
of the four first ordination axes. FR= fraction, SPEC:
species data, ENV: set of environmental predictors.

AX1 AX2 AX3 AX4

Eigenvalue 0.71 0.14 0.09 0.06

FR explained 0.68 0.13 0.08 0.06

FR extracted 0.23 0.09 0.05 0.05

R (spec, env) 0.95 0.65 0.59 0.48

FR fitted 0.11 0.02 0.01 0.01

from desert to subalpine forest. The tree species sort
out well along the elevation gradient –Juniperus os-
teospermais the first tree encountered as one ascends
the mountain range, closely followed byPinus mono-
phylla. These two species overlap considerably and
form the common pinyon-juniper woodland recog-
nized across much of the southwest United States.
Cercocarpus ledifolius, Pinus ponderosa, andAbies
concolorare dominant at middle elevations,Populus
tremuloidesis a relatively high elevation species, and
high elevation forests consist ofPinus flexilisandPi-
nus longeava, with the latter forming pure stands at the
highest elevations. This is the widely recognized ele-
vational order of trees in Great Basin mountain ranges
(Lanner 1983). Elevation is modified by equinox inso-
lation (esol), so that effective elevation is higher in low
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insolation sites, and lower in high insolation sites. The
modifying effect of insolation can be readily seen in
the field when opposing south-facing and north-facing
slopes of canyons support lower and higher elevation
tree species, respectively.

The shrubs also sort out along Axis 1. The
cluster of species with low Axis 1 scores are typi-
cal high desert shrubs, those around the origin are
mid-elevation montane chaparral species, andRibes
cereumis a high elevation shrub associated with pine-
fir forests.

Axis 2 (eigenvalue 0.14) is dominated by topo-
graphic position (tp300), which is interpreted as a
ridge top to valley bottom drainage gradient, as well
as a broad surrogate for micro-climate (wind expo-
sure, cold air drainage), soil depth and frequency of
avalanche disturbance. The major effect of Axis 2 is
to differentiateAcer glabrum, a tree of moist ravines.
The relatively lower scores ofPinus flexilisand Pi-
nus longeavaon Axis 2 indicate that these species
are more often found on ridge tops than in canyons,
but that may also be a function of their presence at
the highest elevations where ridges are common and
canyons are rare. Shrubs on Axis 2 show relatively
little differentiation, butQuercus gembelliiexhibits a
slight preference for canyons, andYucca brevifoliahas
a preference for ridges.

Axis 3 and Axis 4 are relatively minor (eigenval-
ues<0.10), but still significant in the Monte Carlo
test. Most of the trees are grouped close to the ori-
gin. The low Axis 3 score forJuniperus scopulatum
indicates a preference for flatter areas, and the rela-
tively high score ofPinus flexilison Axis 4 indicates
a slight preference for warmer slopes receiving more
solar radiation. For the shrubs, most species cluster
near the origin, butGarreya flavescensexhibits a pref-
erence for steeper and warmer slopes receiving more
solar radiation.

The tolerances (1 standard deviation; s.d.) forJu-
niperus osteospermaand Pinus flexilisare shown to
illustrate that tolerances are an important component
of CCA that are rarely presented, and form a key
to the CANOGEN projections shown below. Species
tolerances along Axis 1 for trees ranged from 0.39
to 0.64 s.d. units, for shrubs they ranged from 0.31
to 0.83. Tolerances were larger on Axis 2 (0.82 to
1.56 for trees, 0.68 to 1.29 for shrubs). While CCA
attempts to equalize species tolerances, it is not possi-
ble in complex data sets, and the different lengths of
the tolerances, reflecting in part the niche breadth, are

an important part of the geographic projections shown
below.

Overall the CCA model explained 15% of the
variance in species presence-absence. Of course this
varies from species to species (Table 1). Maximum
fit was 47% forColeogyne ramosissima,and 10 out
of 22 species had greater than 25% of the variance
explained. At the other end of the spectrum, how-
ever, several species had less than 5% of the vari-
ance explained (Artemisia tridentata, Arctostaphylos
pungens, Pinus monophylla).

The best evaluation Kappa was 0.80 forYucca
baccata, and eight other species had acceptable eval-
uation Kappas from 0.50 to 0.79, and the remainder
had poor evaluation Kappas ranging down to 0.11 for
Chrysothamnus nauseosus. There is not necessarily a
high correspondence between % variance explained
and evaluation Kappa –Pinus monophyllahad only
9% of its variance explained by the calibration data
set, but had an evaluation Kappa of 0.55.Garreya
flavescenshad 22% of its variance explained in the
CCA model but evaluation Kappa was poor at 0.33.
Overall, however, there is a strong correlation be-
tween % variance explained and both calibration and
evaluation Kappa (r = 0.78 and 0.72 respectively;
Figure 4e and 4g). Calibration and evaluation Kappa
were strongly correlated (Figure 4i;r = 0.84). All
three correlation values were significant at the 99%
confidence level (allp-values< 0.01).

Comparing the two approaches

The predictor variables for each GLM model were
chosen from the overall set used in the CCA models.
The major contrast between the two approaches is that
CCA uses the same predictor variables for all species,
while GLM chooses species-specific sets of predic-
tors. The treatment of elevation – the single most
important determinant of species distributions in this
mountain range – in GLM illustrates some important
differences. Elevation shows up as quadratic func-
tion in 13/22 species models (all mid-to high-elevation
species), as a linear term in 4/22 models (all low el-
evation shrubs), and as a third degree polynomial in
4 models indicating a skewed distribution (Table 2).
Topographic position at various scales (tp300, tp1000,
or tp2000) shows up in 17 models. Equinox insolation,
summer solstice insolation, or northness show up in 17
models, indicating that solar radiation loads are im-
portant local predictors of species distributions. GLM
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Table 4. Results from the CCA analysis. Relationship of axes with each environmental predictor. In turn, each axis can be defined as
a combination of the environmental predictors; t= t-value of regression coefficient;r = correlation coefficient.

Variable AX1 AX2 AX3 AX4 t-AX1 t-AX2 t-AX3 t-AX4 r-AX1 r-AX2 r-AX3 r-AX4

elev 1.04 0.10 −0.44 0.44 29.04 0.83 −3.07 2.33 0.93 −0.11 0.04 0.03

slo −0.08 −0.09 1.12 −0.19 −2.28 −0.78 8.12 −1.06 0.43 0.00 0.49 −0.08

esol −0.15 −0.31 0.36 0.82 −4.82 −2.97 3.01 5.10 −0.27 −0.22 0.10 0.40

tp300 −0.13 −0.94 0.00 −0.46 −4.22 −8.91 −0.02 −2.77 0.16 −0.60 −0.06 −0.15

eness 0.00 0.15 0.24 −0.29 0.12 1.51 2.05 −1.87 0.09 0.15 0.11 −0.19

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

A
X

IS
 2

AXIS 1

AMUT

ARPU

ARTR

RICE
CHNA

YUBR

GAFL

CORA
YUBA

GUSA

CHVI

QUGA

EPVI
elev

slo

esol

tp300

eness

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5 2

A
X

IS
 4

AXIS 3

AMUT

ARPU

ARTR
RICE

CHNA

YUBR

GAFL

CORA

YUBA
GUSA

CHVI

QUGA

EPVI

elev

slo

esol

tp300
eness

Figure 3. CCA biplots of shrubs. Species scores are linear combination scores. Species codes are the first two letters of the genus and first two
letters of the species names (see Table 2 for full names). (a) Axis 1 versus axis 2. (b) Axis 3 versus axis 4.

models often have complex interaction terms (15/22
models), many of which are hard to interpret.

Overall, GLM models explain a much higher pro-
portion of variance than CCA-based models (in most
cases; see Figure 4a). GLMs also show in most cases
a better agreement between observed and predicted
presence/absence at the evaluation (Figure 4c). In a
few cases – forRibes cereum, Amelanchier utahensis
and Acer glabrum– CCA models have a much bet-
ter evaluation Kappa. In other cases, they are similar
(max difference= 0.05), as in the case of the models
for Yucca baccata, Juniperus osteosperma, Quercus
gambellii, Garreya flavescens, Chrysothamnus viscid-
iflorus andCh. nauseosus.In all other cases, GLMs
have a better evaluation Kappa.

The rankings of measures of fit among species
were similar for both techniques. Generally, a species

whose distribution is well modeled by GLM (relative
to the others GLM models) is also well modeled by
CCA (relative to the other CCA models). The correla-
tion among various measures of the fit between the two
methods are strong (r = 0.76, 0.87, and 0.82 for %
var/dev explained, calibration Kappa, and evaluation
Kappa respectively; Figures 4a–c; highly significant,
with p-values< 0.001). In both cases, species for
which model predictions have the poorest accuracy
are either disturbance or fire related (category 3 in Ta-
ble 1), or species for which too few observations were
available to calibrate and evaluate the model (category
4 in Table 1).

Potential distribution maps

Once the coefficients are estimated, the models can
be projected into geographic space. Two examples,
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Figure 4. Comparing GLM versus CCA models (a-c) and, within each approach, calibration versus evaluation (d-i). (a) Proportion of explained variance versus species-environ. correlation. (b)
Calibration Kappa. (c) Evaluation Kappa. (d) GLM: fit versus calib. Kappa. (e) CCA: species-env. corr. versus calib. Kappa. (f) GLM: fit versus eval. Kappa (g) CCA: species-env. corr. versus
eval. Kappa (h) GLM: calib. versus eval. Kappa. (i) CCA: calib. versus eval. Kappa. Each point represents a single species, symbolized according to its disturbance context.
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Figure 5. Potential distribution map ofPinus flexilisin the Spring Mountains (Nevada), (a) modeled by GLM, and (b) modeled by CCA.
Potential distribution map ofJuniperus osteospermain the Spring Mountains (Nevada), (c) modeled by GLM, and (d) modeled by CCA.
GLM predictions are probabilities (given in percent in the legend). CCA predictions are in S.D. unit distance from the centroid of the species
observation in the ordination space.
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for Pinus flexilisandJuniperus osteosperma, are re-
spectively given in Figures 4a–d. On a broad scale,
predicted distributions from both approaches look
similar, which is largely a function of the dominance
of elevation.

The probability of species occurrence is low at the
lower elevation limit, increases to a maximum, and
then decreases towards the upper limit. Both the in-
clusion of quadratic elevation terms in GLM models
as well as the reciprocal averaging algorithm in CCA
(that consider bell-shaped unimodal responses) effec-
tively capture this feature of the distributions. Many of
the finer scale details of distribution are related to the
effects of insolation and topographic position.

ThePinus flexilismodel in CCA produces a much
broader predicted range than the GLM model. The
CCA model predicts thatPinus flexilisoccurs on Mt.
Stirling (the area NW of the main distribution) and on
Potosi Mountain (the small area to the south), while
the GLM model predicts a low probability of occur-
rence in a small area on Mt. Stirling only. Small stands
of Pinus flexilisdo indeed occur on Mt. Stirling, but
the species is not known from Potosi. Both models
indicate that the species is more likely to occur on
south-facing slopes within the overall elevation range.
While CCA may provide a better approximation of the
overall species range, it was notably poorer than GLM
in terms of both calibration Kappa (0.44 in CCA, 0.75
in GLM) and evaluation Kappa (0.39 in CCA, 0.72 in
GLM) in Table 1.

The projected distributions ofJuniperus os-
teospermaare very similar in extent, and the fine
scale differences are related to the fact that the GLM
model does not include insolation as a predictor, which
limits the spatial variation due to opposing slopes. Cal-
ibration and evaluation Kappa were similar for both
models (Table 1).

Discussion

In most cases, GLM models clearly explain a higher
proportion of variance (i.e., deviance) than CCA mod-
els. This might result from the fact that GLMs, through
a stepwise selection of predictors, allow one to fit
more accurately the specific ecological (or realized)
niche of a species (see Table 2). However, when
only a very few presence are observed for a species
amongst the total number of sampled sites (e.g. rare
and uncommon species), CCA appears as success-
ful or better than GLM for modeling geographical

distribution. For example, the GLM model forAcer
glabrum(4 occurrences in the calibration set, 2 occur-
rences in the evaluation set) does not include elevation,
although it is obvious that this species occupies a rel-
atively narrow high elevation range, and is restricted
to cool slopes and gullies. This difference can be
explained by considering how CCA establishes the
species-environment relationships. In CCA, species
are not independently related to environmental predic-
tors. On the contrary, the main variance trends in the
species’ data (i.e., thelatentgradients) are constrained
to be combinations of environmental variables. Hence,
as species with similar ecological requirements tend to
be similarly distributed, they will have similar scores
in environmental – or rather canonical – space. A
rare species that is associated in most cases with a
frequent species will benefit from the larger number
of occurrences of the latter to have its ecological re-
quirements (in terms of CCA scores) better defined.
This is presently not possible with GLMs, although
it might pave the way for new research directions. In
particular, designing systems of simultaneous regres-
sion equations (simultaneous GLMs) might allow the
improvement of most current plant distribution models
by integrating species co-occurrence/exclusion infor-
mation (Guisan 1997).

From the ecological point of view, both approaches
attest the limitation of modeling distribution of species
that are strongly related to fire and disturbance history.
Fire is very difficult to map, in particular because it
is time-dependent. Although a site never affected by
fire will not exhibit the same vegetation as a site at
least once affected by fire, the proximity in time of the
last fire and the recurrence intervals are also impor-
tant parameters to include in models. However, unless
historical fire maps of the study area have been sys-
tematically drawn or satellite/aerial photographs are
available for many years back (at least 50), such in-
formation is rarely available to modelers. Site-specific
fire histories can be established by dendrochronol-
ogy, but such studies are labor and cost intensive,
and impossible to establish across broad areas. Other
species show dependence on disturbance rather than
on fire. Avalanches are common in the Spring Moun-
tains and avalanche paths tend to be dominated by
Populus tremuloides, a species that has low calibra-
tion and evaluation Kappa. Flash floods often occur in
desert washes, also, and species such asChrysotham-
nus nauseoususthrive in disturbed washes. Human
disturbances can potentially modify the natural dis-
tribution of species. Proximity to roads, settlements
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or ski resorts can be used as indices of direct human
disturbance, but the scale of much human disturbance
is often very fine and below the resolution of the GIS.
Other disturbances such as pollution can be more dif-
ficult to map and may translate into systematic error
components in the predicted distribution of sensitive
species. However, the predicted ranges of disturbance
related species can indicate areas and physiographic
conditions that, over a longer time frame, are more
likely to experience fire or other disturbances. For
example, the projected range ofPopulus tremuloides
may show areas that are susceptible to avalanches and
may have had aspens at various times in the past, and
potentially in the future.

CCA appears easier than GLMs to implement into
Geographical Information Systems (GIS). A drawback
of this approach is that predictions are not probabilis-
tic but are expressed as a distance from the centroid
of each species. An additional step may be taken
here, to run a logistic regression of species against the
axes scores (Hill 1991), and use those fitted parame-
ters to generate maps, but then the procedure loses
some elegance. With GLMs, predictions are proba-
bilistic but a distinct regression equation needs to be
written for each species in the GIS. This makes the
implementation of GLM models for many species less
straightforward than with CCA, in which the whole
procedure can be written as a single macro function
generating all species maps at the same time.

CCA also provides a much broader view of gen-
eral ecological gradients in a study area. Because the
final choice of environmental loading on each axis is
the result of a weighted averaging algorithm that uses
all species, overall ecological gradients (i.e. the tem-
perature/precipitation gradient defined by elevation as
modified by insolation) will be made clearer than in
any individual GLM model. For community delin-
eation and intepretation, CCA is clearly more valuable
because it deals with the co-occurrence of species. It
also provides the overall gradient of biodiversity, mak-
ing it useful for ecosystem management applications.
This application of CCA was central in the biodi-
versity planning for the Spring Mountains National
Recreation Area (Nachlinger & Reese 1996).

Conclusion

In a general manner, spatial distribution of individ-
ual species is better modeled by Generalized Linear
Modeling (GLM) than by Canonical Correspondence

Analysis (CCA). Overall, both approaches provide a
similar ranking of model quality. Results show that
the less a species is fire- or disturbance-related, the
better its potential geographical distribution within the
study area can be modeled. The few cases where CCA
provides a clearly better evaluation than GLMs are all
related to species having a relatively low amount of
presence recorded amongst the total number of sam-
pled sites. Hence, as a result, rare species might be bet-
ter modeled by CCA whereas frequent to moderately
frequent species might be better modeled by individual
GLMs that better fit the ecological preference of each
species.
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